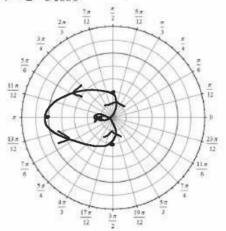
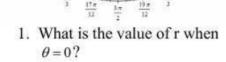
0

0 900

180


270

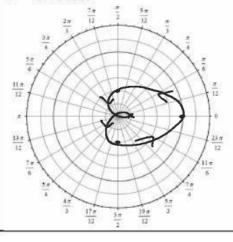

٣

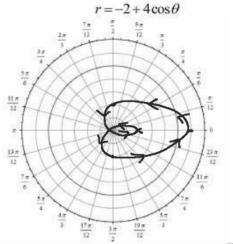
2

-1,01	•

Graph the following polar curve:

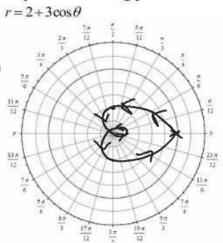
 $r = 2 - 4\cos\theta$

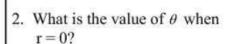

2-46-1) 2-6-4)


 $\frac{11\pi}{12}$

- 1. What is the value of r when $\theta = 0$?
- 2. What is the value of θ when r = 0?
- 2. What is the value of θ when r = 0?
- 3. What is the value of θ when $\theta = \frac{\pi}{2}$?
- 3. What is the value of θ when $\theta = \frac{\pi}{2}$?

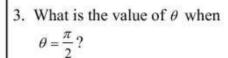
(1,0)

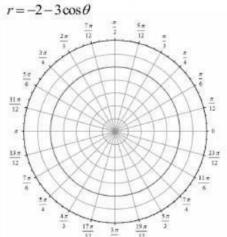

Graph the following polar curve: $r = -2 + 3\cos\theta$

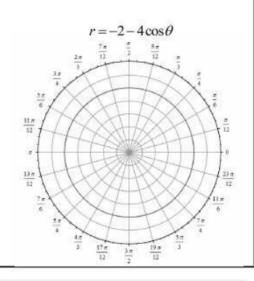

0 5 (Sp) 80 2 180 -1 (-1,180 270

Graph the following polar curve:

1. What is the value of r when $\theta = 0$?

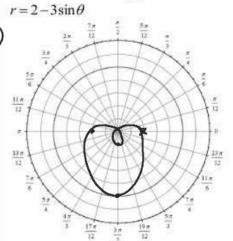

 $r = 2 + 4\cos\theta$

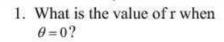

1. What is the value of r when


 $\theta = 0$?

2. What is the value of θ when r = 0?

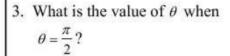
3. What is the value of θ when $\theta = \frac{\pi}{2}$?

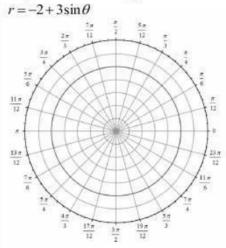


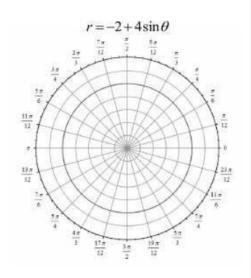


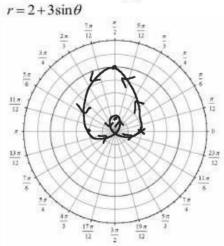
2-(-3)

0 2 (2,0) 90 -1 180 2 270 5

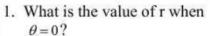

Graph the following polar curve:

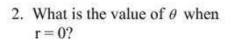


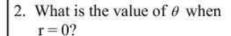


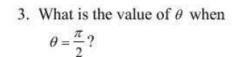

 $r = 2 - 4\sin\theta$

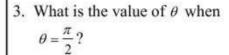
- 1. What is the value of r when $\theta = 0$?
- 2. What is the value of θ when r = 0?
- 2. What is the value of θ when r = 0?
- 3. What is the value of θ when $\theta = \frac{\pi}{2}$?

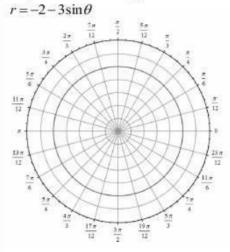


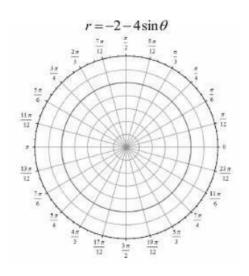





1. What is the value of r when $\theta = 0$?


 $r = 2 + 4\sin\theta$





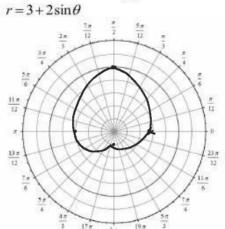
Summary of the Limacon: $r = \pm a \pm b \cos \theta$

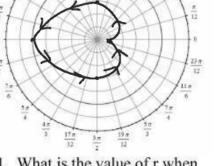
- For a polar equation to be considered a Limacon with a loop, the value |a| must be smaller than |b|.
- Plug in $\theta = 0$. This will give you the value of r and where you will start the curve moving counterclockwise back to the pole.
- The value of **a** will tell you where the curve is at on the y-axis (when $\theta = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$)
- To complete the entire shape $0 \le \theta \le 2\pi$.
- The value of |a|+|b| will tell you how far out on the x-axis the curve is
- The value of |a|-|b| will tell you how far out on the x-axis the loop is
- If b is negative the curve and the loop will be on the left side of the pole
- If b is positive the curve and the loop will be on the right side of the pole

Summary of the Limacon: $r = \pm a \pm b \sin \theta$

- For a polar equation to be considered a Limacon with a loop, the value |a| must be smaller than |b|.
- Plug in $\theta = 0$. This will give you the value of r and where you will start the curve moving counterclockwise back to the pole.
- The value of **a** will tell you where the curve is at on the x-axis (when $\theta = 0$ and $\theta = \pi$)
- To complete the entire shape $0 \le \theta \le 2\pi$.
- The value of |a| + |b| will tell you how far out on the y-axis the curve is
- The value of |a| |b| will tell you how far out on the y-axis the loop is
- If b is negative the curve and the loop will be below the pole
- If b is positive the curve and the loop will be above the pole

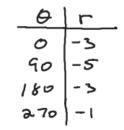
Dimple Limecon


0	4
0	1

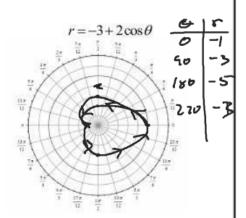

180

270

0	l r
0	3
90	5
180	3
270	١


Graph the following polar curve:

 $r = 3 - 2\cos\theta$


- 1. What is the value of r when $\theta = 0$?
- 1. What is the value of r when $\theta = 0$?
- 2. What is the value of r when $\theta = \pi$?
- 2. What is the value of r when $\theta = \pi$?
- 2. What is the value of θ when r = 3?
- 2. What is the value of θ when r = 3?

$$r = -3 - 2\sin\theta$$

$$\frac{2\pi}{11}$$

$$\frac{1\pi}{11}$$

Summary of the Dimpled Limacon: $r = \pm a \pm b \cos \theta$

- For a polar equation to be considered a Dimpled Limacon, the value |a| must be larger than |b|.
- Plug in $\theta = 0$. This will give you the value of r and where you will start the curve moving counterclockwise.
- There will be no value at the pole.
- The value of **a** will tell you where the curve is at on the y-axis (when $\theta = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$)
- To complete the entire shape $0 \le \theta \le 2\pi$.
- The value of |a|+|b| will tell you how far out to the right on the xaxis the curve is if cosine is positive
- The value of |a|+|b| will tell you how far out to the left on the x-axis
 the curve is if cosine is negative
- The value of |a| |b| will tell you how far out on the left of the x-axis the curve is if cosine is positive
- The value of |a|-|b| will tell you how far out on the right of the xaxis the curve is if cosine is negative

Summary of the Limacon: $r = \pm a \pm b \sin \theta$

- For a polar equation to be considered a Dimpled Limacon, the value |a| must be larger than |b|.
- Plug in $\theta = 0$. This will give you the value of r and where you will start the curve moving counterclockwise.
- There will be no value at the pole.
- The value of **a** will tell you where the curve is at on the x-axis (when $\theta = 0$ and $\theta = \pi$)
- To complete the entire shape $0 \le \theta \le 2\pi$.
- The value of |a|+|b| will tell you how far up on the y-axis the curve is if sine is positive
- The value of |a|+|b| will tell you how far up on the y-axis the curve is if sine is negative
- The value of |a| |b| will tell you how far down on the y-axis the curve is if sine is positive
- The value of |a|-|b| will tell you how far up on the y-axis the curve is if sine is negative